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Abstract

We examine whether some countries are more
richly represented in embedding space than
others. We find that countries whose names
occur with low frequency in training corpora
are more likely to be tokenized into subwords,
are less semantically distinct in embedding
space, and are less likely to be correctly pre-
dicted: e.g., Ghana (the correct answer and in-
vocabulary) is not predicted for, “The country
producing the most cocoa is [MASK].”. Al-
though these performance discrepancies and
representational harms are due to frequency,
we find that frequency is highly correlated
with a country’s GDP; thus perpetuating his-
toric power and wealth inequalities. We an-
alyze the effectiveness of mitigation strate-
gies; recommend that researchers report train-
ing word frequencies; and recommend future
work for the community to define and design
representational guarantees.

1 Introduction

How similar are the words “Brooklyn” and
“Queens”? To a New Yorker, they evoke two very
different places, cultures, and cuisines, but to a
Seattleite, they are quite similar, both being bor-
oughs of New York City.1 Our perception of en-
tities such as cities or countries is conditioned on
our backgrounds. Here, we ask if language models
are also susceptible to representational biases.

We suggest three criteria to characterize the
quality of representations for particular entities or
groups: consistency, distinctiveness, and recogniz-
ability. For consistency, are all entities of a certain
type (such as all country names) represented with
the same number of tokens in the lexicon? For dis-
tinctiveness, are entities of the same category seen
as equally distinct in representational space? For
recognizability, are models capable of generating

1https://en.wikipedia.org/wiki/View_
of_the_World_from_9th_Avenue.

all entities of a certain type in response to ques-
tions? And are the differences between entities
confounded across lines of historical inequity (like
wealth of countries)?

Focusing on BERT (bert-base-cased2)
representations (Devlin et al., 2019), we find
that names of countries that appear less fre-
quently in training data are less likely to be in-
vocabulary, are less semantically distinct from
other countries, and are less frequently pre-
dicted in the masked language modeling (MLM)
task. Disappointingly, we find similar behavior
in bert-base-multilingual-cased and
roberta-base. We identify these differences
as intrinsic representational harms where low fre-
quency countries are more likely to be conflated
with one another and their existence less recog-
nized.

A more troubling result is that training data fre-
quency is highly correlated with the gross domestic
product of a country (GDP) (Pearson’s r = 0.82).
Our training data and thus the representation of en-
tities through our language models encodes wealth
and power disparities and perpetuates representa-
tional harms. Given these significant differences in
representation, what could it look like to impose
a minimum quality of representation for signifi-
cant entities? We recommend that the community
consider designing representational guarantees for
language models.

In summary we: 1) reveal multiple ways in
which the BERT representation of high GDP coun-
tries is systematically richer than that of low GDP
countries; 2) study the effectiveness of potential
mitigation efforts; and 3) propose the idea of rep-
resentational guarantees as future work for the
community.

2https://huggingface.co/
bert-base-cased
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2 Related Work

Language technologies have long been studied
for potential intrinsic and extrinsic harms (Gal-
liers and Jones, 1993). Known intrinsic harms in-
clude misrepresentation of gender (Bolukbasi et al.,
2016), race (Abid et al., 2021), and ability (Hutchin-
son et al., 2020) — all types of representational
harms (Barocas et al., 2017; Crawford, 2017; Blod-
gett et al., 2020). Other intrinstic harms include
forms of erasure through under-representation of
LGBTQ+ identity terms (Strengers et al., 2020;
Oliva et al., 2021) and racial groups (Gehman et al.,
2020). Extrinsic harms are often found in down-
stream tasks and include disparities in quality of ser-
vice among user groups (Zhang et al., 2020) such as
African-American users (Blodgett and O’Connor,
2017; Koenecke et al., 2020). However, low sta-
tistical power has also made it difficult to make
conclusive claims about the presence or absence of
bias (Ethayarajh, 2020).

Many of these representational harms have been
linked to word frequency in static embeddings
(Bolukbasi et al., 2016; Caliskan et al., 2017; Zhao
et al., 2018; Bordia and Bowman, 2019; Ethayarajh
et al., 2019b; van Loon et al., 2022). Low fre-
quency words also differ geometrically from other
words, with smaller inner products (Mimno and
Thompson, 2017) and lower variance (Ethayarajh
et al., 2019a). Recent work has also shown how
frequency impacts contextual embeddings such as
the under-estimation of cosine similarity among
high-frequency words (Zhou et al., 2022) and the
discrepancies in representations of personal names
(Shwartz et al., 2020; Wolfe and Caliskan, 2021).
Our work extends these lines of work via the ex-
amination of representational harms for country
names.

3 Rich Countries have their own Tokens

Are poor and rich countries tokenized the same
way? Here, we focus on BERT’s tokenization pro-
cess and measure the consistency (or rather incon-
sistency) in how names of countries are tokenized
and then represented. Our GDP data is retrieved
from the United Nations Statistics Division from
2019 34.

Of the 159 single-word countries names from

3https://unstats.un.org/unsd/snaama/
Basic; GDP data was shown in USD.

4Code for this paper can be found at https://github.
com/katezhou/country_distortions

Subwords Freq GDP (M) Example

1 (n=134) 74,882 430,596 Uzbekistan
2 (n=32) 68,148 870,702 Comoros
3 (n=15) 8,711 34,896 Grenada

4+ (n=12) 4,309 14,980 Eswatini

Table 1: The average BERT training data frequency and
GDP associated with the countries, binned by the num-
ber of subwords the country was tokenized into (e.g.,
“Grenada” was tokenized into three subwords.). Us-
ing OLS to predict number of subwords, frequency ex-
plains 38% of the variation in number of subwords.

the United Nations members list, 134 of them
are in-vocabulary, — the remaining 25 are out-
of-vocabulary (OOV). In WordPiece tokeniza-
tion, OOV words are tokenized into in-vocabulary
subwords (e.g. “Andorra” becomes “And” and
“##orra”, see table 1). Additionally, as a limita-
tion of the unigram vocabulary, the 34 multi-word
country names (e.g. “United States") are also OOV
and represented as distinct tokens (“United” and
“States”.)5 Each word of multi-word countries can
also be OOV (e.g., Sao Tome and Principe is tok-
enized into 9 different subwords).

We used ordinary least squares regression to pre-
dict the number of subword tokens in each country
name, using training data frequency of each country
name as the feature (BERT training data estimated
from the March 1st, 2020 Wikimedia Download
and BookCorpus) (Zhu et al., 2015; Hartmann and
dos Santos, 2018).6. We found that training data
frequency explains 38% of the variance in number
of subwords (p < 0.01), despite the confounder of
multi-word countries being considered OOV (Table
2 in Appendix). This is likely due to the fact that
the tokenizer builds its vocabulary based on fitting
training likelihood. Given that the training data
frequency of a country’s name correlates strongly
with its GDP ( Pearson’s r = 0.82), the countries
that have the highest number of subwords are also
the ones with the lowest GDP.

5Acronyms of some high GDP countries e.g. US, USA,
UK, UAE are in-vocabulary but are not included in this study
to avoid introducing confounders concerning which to include
and how to pool. This is likely a conservative bias since
including them would have increased the effects we study.

6Additional tools used: https://github.com/
IlyaSemenov/wikipedia-word-frequency;
https://github.com/attardi/wikiextractor
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Figure 1: Average norm of embeddings in relation
to the number of subwords of the embedding. OOV
words are represented by averaging subwords. Pear-
son’s correlation between average norm and number of
subwords, r = −0.92.

3.1 Geometric Impact of being OOV

The methods used to represent OOV words can
impact the geometry of their representations. For
example, the representation of OOV words often
have smaller norms (L2 of the word embedding)
than in-vocabulary words. This is because a com-
mon way to represent OOV words is to take the
average of their subwords (Pilehvar and Camacho-
Collados, 2019; Blevins and Zettlemoyer, 2020;
Bommasani et al., 2020). However, since the av-
erage values for each dimension are near zero, the
more subwords that are averaged, the smaller the
norm of the vectors (Adi et al., 2017) (figure 1).
As a result, the Pearson’s correlation between the
norm and number of subwords is r = −0.92. A
common alternative to averaging subwords is to use
the first subword to represent an OOV word. When
this representation is used, the correlation between
the norm and the number of subwords reverses
and is slightly positive, Pearson’s r = 0.22 (figure
4 in Appendix). One possible explanation could
be that the first subword of OOV words are more
likely to be stop words, which are known to have
larger norms (Ethayarajh, 2019). The difference in
geometry between OOV and in-vocabulary words
exists in both representation methods. This could
could result in impacts on tasks using embedding-
based retrieval (e.g., nearest-neighbor LM) as low-
frequency names will have additionally distinguish-
ing geometric characteristics as a result of tokeniza-
tion.

Inconsistency in tokenizing country names leads
to inconsistency in geometric representation. A
potential mitigation might be to have all country
names be in-vocabulary with a dedicated token.
This might not address all impacts of training data
frequency imbalances, but would at least prevent

additional geometric differences due to tokeniza-
tion.

4 Richer Countries are Most Distinct in
Embedding Space

Nations or entire regions are subject to bias. The
African continent, for example, is often treated jour-
nalistically as a single homogeneous entity (Noth-
ias, 2018), as if African countries are all substi-
tutable for one another. We draw on this finding
to ask whether historically disadvantaged countries
are also conflated with one another in the embed-
dings of their names (i.e., seen as less distinct from
each other than other countries).

We measure the semantic similarity between
pairs of the 134 in-vocabulary countries by cre-
ating word embeddings for each name (done by
averaging the last four hidden layers of BERT). We
calculate the average in-group cosine similarity of
country names as grouped by frequency (i.e., we
take the countries in each decile of frequency and
measure the average cosine similarity across the(14
2

)
pairs). We repeat this ten times and find that

the 10% least frequent names have an average in-
group similarity of 0.610 compared to an average
similarity of 0.582 for the 10% most frequent coun-
tries (mean δ = 0.028, permutation test p < 0.01).

We then calculate the average semantic similar-
ity of a country’s embedding to all other countries
to measure a country’s distinctiveness (averaged
over ten trials). Using OLS to predict average
cosine similarity, frequency explains 8% of the
variance (Table 4 in Appendix). For example, in
our experiments, France had a cosine similarity of
≥ 0.7 with 21 other countries while Haiti shared
a cosine similarity of ≥ 0.7 with 59 other coun-
tries. France’s distinctiveness contrasts with Haiti’s
similarity with other countries. Using these embed-
dings and cosine similarities in a downstream task
like IR (or MT, where embedding cosines are used
in algorithms like BERTScore) would yield vastly
different results despite using the same threshold.
We visualize how average cosine similarity corre-
lates with a country’s GDP in Figure 2.

To ensure that the semantic similarity discrep-
ancies are not simply a consequence of how these
countries are written about in test examples, we run
the same OLS experiment on an artificial dataset
where names of countries appear in identical con-
texts. The results are consistent: frequency ex-
plains 9% of the variance in average cosine similar-
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Figure 2: Average cosine similarity of a country to all
other countries vs. its GDP. Pearson’s r = −0.28 for
average cosine similarity and GDP. Wealthier countries
are more distinct in BERT embedding space.

ity (Table 5 and Table 6 in Appendix). Independent
of how these countries are being written about in
any potential downstream task, NLP models like
BERT embed country names in a way that results
in higher semantic similarity for low frequency
names, and hence low GDP countries. This is a
representational harm: distinctiveness of a nation’s
name in NLP representations correlates with the
nation’s wealth, resulting in poorer countries being
more likely to be conflated with one another.

4.1 Tokenization and Ssemantic Similarity

As discussed in the section above, tokenization re-
sults in geometric differences between OOV and
in-vocabularly words, and here we examine tok-
enization’s effect on cosine similarity. OOV coun-
try names have higher in-group similarity averages
when averaging subpieces (0.668 vs 0.628; mean
δ = 0.040, permutation test p < 0.01). Given that
OOV words have smaller norms and are closer to
the centroid, this signals a concentration of low-
frequency words. However, when using the first
subpiece to represent OOV words, OOV country
names have lower in-group similarity averages than
in-group similarity among in-vocabulary words
(0.589 vs 0.625; mean δ = 0.037, permutation test
p < 0.001) — we showed that these embeddings
conversely have larger norms and could be more
widely dispersed. The key takeaway here is that
both methods show semantic differences between
in-vocabulary and OOV words; again there are po-
tential impacts in embedding-based downstream
tasks.

5 Richer Countries are more Frequently
Predicted

The lack of recognition of people and groups
(Strengers et al., 2020; Oliva et al., 2021; Gehman
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Figure 3: Number of times a country was predicted in
the MLM task versus its GDP (logged). Pearson’s cor-
relation between GDP (logged) and number of times a
country is predicted, R = 0.64.

et al., 2020) has often been cited as an represen-
tational harm. Here, we use the masked language
modeling task as a proxy for many downstream
tasks that need to be able to predict the name of
a country (e.g., as the answer to a question, or in
a summary) to measure whether countries are all
minimally predicted or whether instead we see rep-
resentational harms such as erasure.

We randomly sample sentences from Wikipedia
that contain the name of a country, replace the name
with a BERT mask token ([MASK]), and use the
masked-out country name as the gold label. We
use 100 examples of each of the 134 in-vocabulary
country names.7 The model will only predict in-
vocabulary words, which again illustrates the im-
pact of inconsistent tokenization: the very task
BERT was trained on is unable to handle OOV
country names without modification.

High frequency countries (75th percentile) have
an average accuracy of 42% while low frequency
(25th percentile) countries have an accuracy of 26%
(table 7 in Appendix). How often a country is
predicted is highly correlated with its training data
frequency (Pearson’s r = 0.64, figure 3). Of all
the country names predicted, the 10 least predicted
countries make up 2% of total guesses compared to
25% for the top 10 most predicted countries. BERT
fails this task in drastic ways; predicting China,
India, Brazil for, “The poorest country in the world
is [MASK].” (Burundi and Somalia ranked as the
poorest by GDP/capita). This reduced recognition
of poor countries is a representational harm.

6 The Limitations of Mitigation Efforts

We analyze the effectiveness of two popular miti-
gation efforts.

7This is a significantly harder task than ordinary MLM
as only names of countries are masked out, there could be
multiple appropriate answers, and a limited context is given.



1. Could these frequency-based effects be miti-
gated with additional training data? We measure
the performance of Multilingual BERT (BERT-ML)
which includes Wikipedia articles from 104 other
languages. We continue to find accuracy dispar-
ities between low and high GDP countries (15%
vs 29%). Additional training data fails to mitigate
these harms, most likely because the additional data
continues to amplify existing imbalances (i.e., Ger-
man, French, and Polish are the next three biggest
languages of Wikipedia articles). Data augmen-
tation as a mitigation technique is challenging as
datasets could easily maintain existing or intro-
duce new frequency imbalances. We also tested
RoBERTa (trained on over 160GB more data) on
this task with similar results (table 7 in Appendix).

2. Could fine-tuning or continuing pre-
training mitigate these harms? We select 20 ran-
dom countries (Appendix table 8); for each, we
select 1,000 random sentences from Wikipedia that
mentions the country’s name. After four epochs
of training, we then test on an evaluation dataset
(100 examples/country) and we see a 13% increase
in performance on our selected countries and a 3%
decrease for other countries (table 9 and figure 5
in Appendix). Our subset of interested countries
originally made up 17% of all guesses, but this
rate more than doubles in our tuned model. This
pre-training mitigation method shows promise but
has trade-offs in performance, requires practition-
ers to be aware of inequalities, and have access to
enough training samples to continue pre-training
effectively.

7 Discussion and Conclusion

We find significant disparities in the quality of
representation of country names and show how
these differences result in representational harms
that perpetuate existing wealth and power inequal-
ities. We make two recommendations on paths
forward. We recommend the release of training
word frequencies to increase transparency and iso-
late current representational harms (Gebru et al.,
2021; Mitchell et al., 2019; Bender and Friedman,
2018; Ethayarajh and Jurafsky, 2020). Practition-
ers who use these models in their systems and
research should have access to the topic and en-
tity distribution of our models given the potential
for frequency-related harms. We also recommend
the community consider designing representational
guarantees for significant entities to mitigate these

downstream harms. Our work illustrates the poten-
tial harms that arise when entities such as country
names do not have representational guarantees. We
encourage the community to consider the follow-
ing questions: How can we ensure entities such
as names of country be in-vocabulary? How can
we guarantee a minimum distinctness and ensure
recognition of historically disadvantaged groups?
Such guarantees will likely be difficult to design
and will require expertise from multiple domains
but mitigating these representational harms is an
important task that we cannot ignore.
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A Appendix

A.1 Appendix for section 3
To illustrate the skew of BERT’s vocabulary on a
larger dataset, we repeat this experiment for names
of cities across the world.8 Cities, similar to coun-
try names are also information-rich entities rep-
resenting peoples and places. Filtering for popu-
lous (>100,000) single-word cities, 50% of North
American cities and 25% of European cities are
in-vocabulary compared to less than 6% of city
names from Asia, Africa, and Central and South
America (Table 3). Contrast Nigeria — world’s
fourth largest population of English speakers —
with the United Kingdom. Lagos is the only city
in-vocabulary out of a possible 89 populous cities,
compared to the United Kingdom where 53 out of
its 64 populous cities are in vocabulary.

A.2 Appendix for section 4
A.3 Appendix for section 5

8The city and population data was created by MaxMind,
available from http://www.maxmind.com/.

https://doi.org/10.1145/3287560.3287596
https://doi.org/10.1080/1461670X.2016.1262748
https://doi.org/10.1080/1461670X.2016.1262748
https://link.springer.com/article/10.1007/s12119-020-09790-w
https://link.springer.com/article/10.1007/s12119-020-09790-w
https://link.springer.com/article/10.1007/s12119-020-09790-w
https://doi.org/10.18653/v1/N19-1128
https://doi.org/10.18653/v1/N19-1128
https://doi.org/10.18653/v1/N19-1128
https://doi.org/10.18653/v1/2020.emnlp-main.556
https://doi.org/10.18653/v1/2020.emnlp-main.556
https://doi.org/10.1145/3313831.3376315
https://doi.org/10.1145/3313831.3376315
https://arxiv.org/pdf/2201.08451.pdf
https://arxiv.org/pdf/2201.08451.pdf
https://arxiv.org/pdf/2201.08451.pdf
https://doi.org/10.18653/v1/2021.emnlp-main.41
https://doi.org/10.18653/v1/2021.emnlp-main.41
https://doi.org/10.18653/v1/2021.emnlp-main.41
https://doi.org/10.1145/3368555.3384448
https://doi.org/10.1145/3368555.3384448
https://doi.org/10.18653/v1/N18-2003
https://doi.org/10.18653/v1/N18-2003
https://doi.org/10.18653/v1/N18-2003
https://doi.org/10.1109/ICCV.2015.11
https://doi.org/10.1109/ICCV.2015.11
https://doi.org/10.1109/ICCV.2015.11


Dep. Variable: # of subwords R-squared: 0.384
Model: OLS Adj. R-squared: 0.380
Method: Least Squares F-statistic: 118.8
Date: Mon, 15 Nov 2021 Prob (F-statistic): 7.95e-22
Time: 16:41:27 Log-Likelihood: -272.30
No. Observations: 193 AIC: 548.6
Df Residuals: 191 BIC: 555.1
Df Model: 1

coef std err t P> |t| [0.025 0.975]

Constant 7.1702 0.515 13.912 0.000 6.154 8.187
freq_logged -0.5502 0.050 -10.901 0.000 -0.650 -0.451

Omnibus: 90.415 Durbin-Watson: 2.177
Prob(Omnibus): 0.000 Jarque-Bera (JB): 339.064
Skew: 1.900 Prob(JB): 2.36e-74
Kurtosis: 8.265 Cond. No. 74.0

Table 2: OLS Regression Results: Using training data frequency (logged) to predict number of subwords as
tokenized by BERT. Training word frequency explains 38% of the variance in number of subpieces as tokenized
by BERT.

Region # In-Vocab Population

Africa 372 5% 23,296,502
Americas 594 7% 9,335,510
Asia 1,466 4% 34,046,146
Europe 372 25% 11,278,318
N America 49 50% 1,834,020
Oceania 20 75% 1,316,862

Table 3: Average number of populous (>100,000) cities that are in BERT-base-cased’s vocabulary.



Dep. Variable: Average Cosine Similarity R-squared: 0.084
Model: OLS Adj. R-squared: 0.077
Method: Least Squares F-statistic: 12.13
Date: Sat, 13 Nov 2021 Prob (F-statistic): 0.000675
Time: 11:05:47 Log-Likelihood: 330.05
No. Observations: 134 AIC: -656.1
Df Residuals: 132 BIC: -650.3
Df Model: 1

coef std err t P> |t| [0.025 0.975]

Constant 0.6973 0.019 37.114 0.000 0.660 0.735
freq_logged -0.0061 0.002 -3.482 0.001 -0.010 -0.003

Omnibus: 8.539 Durbin-Watson: 1.998
Prob(Omnibus): 0.014 Jarque-Bera (JB): 8.470
Skew: -0.604 Prob(JB): 0.0145
Kurtosis: 3.236 Cond. No. 113.

Table 4: OLS Regression Results: Using training data frequency (logged) to predict the average cosine similarity
between a country compared to all other countries (in-vocabulary countries only). Frequency explains 8% of the
variance. The more frequent the country, the lower average cosine similarity — indicating its distinctness from all
other countries.

Dep. Variable: Average Cosine Similarity R-squared: 0.086
Model: OLS Adj. R-squared: 0.079
Method: Least Squares F-statistic: 12.47
Date: Mon, 15 Nov 2021 Prob (F-statistic): 0.000570
Time: 16:46:42 Log-Likelihood: 440.48
No. Observations: 134 AIC: -877.0
Df Residuals: 132 BIC: -871.2
Df Model: 1

coef std err t P> |t| [0.025 0.975]

Constant 0.8458 0.008 102.629 0.000 0.830 0.862
freq_logged -0.0027 0.001 -3.531 0.001 -0.004 -0.001

Omnibus: 6.442 Durbin-Watson: 2.084
Prob(Omnibus): 0.040 Jarque-Bera (JB): 3.258
Skew: -0.112 Prob(JB): 0.196
Kurtosis: 2.270 Cond. No. 113.

Table 5: OLS Regression Results: Using training data frequency (logged) to predict the average cosine similarity
between a country compared to all other countries (in-vocabulary countries only) when names of countries appear
in identical contexts. Frequency explains 9% of the variance. The more frequent the country, the lower average
cosine similarity — indicating its distinctness from all other countries.



Sentence

I am from COUNTRY.
I live in COUNTRY.
I hope this January I will get to travel to COUNTRY.
I am interesting in traveling to COUNTRY.
My friend is from COUNTRY.
COUNTRY is well known for its history.
COUNTRY has a diverse culture and a fascinating history.
COUNTRY has been involved in a number of historical events.
COUNTRY is developing its economic sector rapidly.
COUNTRY fought in a number of wars.
Today my history teacher taught us about COUNTRY and its history.
The geography of COUNTRY is fascinating.
A number of scientists from COUNTRY have gained fame for their work.
Living in COUNTRY definitely has its advantages and disadvantages.
The government of COUNTRY is facing criticism.
I never thought to visit COUNTRY until my neighbor told me about it.
The news says that COUNTRY is going through some severe climate change.
The athlete from COUNTRY has just won the Olympic medal.
The actress was born in COUNTRY and immigrated as a kid.
A number of fossils has been found in COUNTRY where scientists least expected.

Table 6: List of artificial sentences used in section 4 to measure cosine similarity of country names in identical
contexts.

GDP
Quartile

BERT
Base

BERT
ML

RoB-
ERTa Tuned

1 26% 15% 14% 28%
2 26% 18% 22% 30%
3 32% 22% 26% 30%
4 42% 29% 39% 38%

Table 7: Performance on the MLM task as binned by gold label’s GDP (by quartiles) from section 5. We see that
performance is best on the high GDP countries and that our tuned model is able to perform better on the lower
GDP countries which are in our set of interested countries (Table 8).



Country GDP (millions) Freq

India 2,891,582 505,003
Iran 603,779 160,699
Poland 595,862 197,231
Egypt 317,359 101,897
Qatar 183,466 22,766
Angola 85,000 19,839
Myanmar 76,784 23,840
Uzbekistan 57,921 13,244
Serbia 51,475 57,957
Uganda 32,609 33,860
Cambodia 27,097 22,095
Iceland 24,188 31,763
Senegal 23,664 14,672
Syria 20,379 53,987
Jamaica 15,830 40,257
Madagascar 14,104 23,512
Bahamas 13,578 13,882
Guinea 12,354 54,010
Chad 11,271 38,650
Barbados 5,209 13,829

Table 8: List of twenty randomly selected countries from section 6. Additional data for each of these countries was
used to continue pre-training the model — resulting in an increased in performance on this subset of countries.

BERT-Base Tuned
Accuracy
Interested Countries 31.75% 44.55%
Other Countries 31.56% 28.89%
% of predictions
Interested Countries 17.62% 44.44%
Other Countries 82.37% 55.56%

Table 9: Average accuracy MLM task of BERT-Base and our tuned model for our random set interested countries
and all other countries. Average % of predictions out of all countries predicted (non-countries words are not in
denominator).
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Figure 4: Average norm of embeddings in relation to the number of subpieces of the embedding. OOV words are
represented by the first subword of the country name. Pearson’s correlation between average norm and number of
subwords, R = 0.22.
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Figure 5: Number of times a country was predicted in the MLM task versus its GDP (logged) in our tuned model.
Pearson’s correlation between GDP (logged) and number of times a country is predicted for our tuned mode,
R = 0.22.


